Tag Archives: Planet

Accretion of a giant planet onto a white dwarf star – Nature.com

Accretion of a giant planet onto a white dwarf star – Nature.com

  • 1.

    Zuckerman, B. & Becklin, E. E. Excess infrared radiation from a white dwarf—an orbiting brown dwarf? Nature 330, 138–140 (1987).

  • 2.

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

  • 3.

    Koester, D., Gänsicke, B. T. & Farihi, J. The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34 (2014).

  • 4.

    Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J. 584, L91–L94 (2003).

  • 5.

    Zuckerman, B., Koester, D., Melis, C., Hansen, B. M. & Jura, M. The chemical composition of an extrasolar minor planet. Astrophys. J. 671, 872–877 (2007).

  • 6.

    Frewen, S. F. N. & Hansen, B. M. S. Eccentric planets and stellar evolution as a cause of polluted white dwarfs. Mon. Not. R. Astron. Soc. 439, 2442–2458 (2014).

  • 7.

    Xu, S. et al. The chemical composition of an extrasolar Kuiper Belt Object. Astrophys. J. 836, L7 (2017).

  • 8.

    Gentile Fusillo, N. P., Gänsicke, B. T. & Greiss, S. A photometric selection of white dwarf candidates in Sloan Digital Sky Survey Data Release 10. Mon. Not. R. Astron. Soc. 448, 2260–2274 (2015).

  • 9.

    Horne, K. & Marsh, T. R. Emission line formation in accretion discs. Mon. Not. R. Astron. Soc. 218, 761–773 (1986).

  • 10.

    Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseous metal disk around a white dwarf. Science 314, 1908–1910 (2006).

  • 11.

    Melis, C. et al. Gaseous material orbiting the polluted, dusty white dwarf HE 1349–2305. Astrophys. J. Lett. 751, 4 (2012).

  • 12.

    Bauer, E. B. & Bildsten, L. Polluted white dwarfs: mixing regions and diffusion timescales. Astrophys. J. 872, 96 (2019).

  • 13.

    Ferland, G. J. et al. The 2017 release Cloudy. Rev. Mex. Astron. Astrofis. 53, 385–438 (2017).

  • 14.

    Pyrzas, S. et al. Post-common envelope binaries from SDSS. XV. Accurate stellar parameters for a cool 0.4 M white dwarf and a 0.16 M M dwarf in a 3 h eclipsing binary. Mon. Not. R. Astron. Soc. 419, 817–826 (2012).

  • 15.

    Davidsson, B. J. R. Tidal splitting and rotational breakup of solid spheres. Icarus 142, 525–535 (1999).

  • 16.

    Gänsicke, B. T. et al. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon. Not. R. Astron. Soc. 424, 333–347 (2012).

  • 17.

    de Pater, I., Romani, P. N. & Atreya, S. K. Uranus deep atmosphere revealed. Icarus 82, 288–313 (1989).

  • 18.

    Irwin, P. G. J. et al. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420–427 (2018).

  • 19.

    Irwin, P. G. J. et al. Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere. Icarus 321, 550–563 (2019).

  • 20.

    Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

  • 21.

    Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).

  • 22.

    Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

  • 23.

    Hartman, J. D. et al. HAT-P-26b: a low-density Neptune-mass planet transiting a K star. Astrophys. J. 728, 138 (2011).

  • 24.

    Wakeford, H. R. et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017).

  • 25.

    Nelemans, G. & Tauris, T. M. Formation of undermassive single white dwarfs and the influence of planets on late stellar evolution. Astron. Astrophys. 335, L85–L88 (1998).

  • 26.

    Mustill, A. J., Villaver, E., Veras, D., Gänsicke, B. T. & Bonsor, A. Unstable low-mass planetary systems as drivers of white dwarf pollution. Mon. Not. R. Astron. Soc. 476, 3939–3955 (2018).

  • 27.

    Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

  • 28.

    Manser, C. J. et al. Doppler imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9. Mon. Not. R. Astron. Soc. 455, 4467–4478 (2016).

  • 29.

    McDonough, W. The composition of the Earth. In Earthquake Thermodynamics and Phase Transformation in the Earth’s Interior (eds Teisseyre, R. & Majewski, E.) 5–24 (Elsevier Science Academic Press, 2000).

  • 30.

    Abazajian, K. N. et al. The Seventh Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. 182, 543–558 (2009).

  • 31.

    Abolfathi, B. et al. The Fourteenth Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. 235, 42 (2018).

  • 32.

    Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

  • 33.

    Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys. 559, A96 (2013).

  • 34.

    Smak, J. On the emission lines from rotating gaseous disks. Acta Astron. 31, 395–408 (1981).

  • 35.

    Koester, D. White dwarf spectra and atmosphere models. Mem. Soc. Astron. Ital. 81, 921–931 (2010).

  • 36.

    Bergeron, P., Saffer, R. A. & Liebert, J. A spectroscopic determination of the mass distribution of DA white dwarfs. Astrophys. J. 394, 228–247 (1992).

  • 37.

    Homeier, D. et al. An analysis of DA white dwarfs from the Hamburg quasar survey. Astron. Astrophys. 338, 563–575 (1998).

  • 38.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

  • 39.

    Bergeron, P., Fontaine, G., Tremblay, P.-E. & Kowalski, P. M. Synthetic colors and evolutionary sequences of hydrogen- and helium-atmosphere white dwarfs (2016). http://www.astro.umontreal.ca/bergeron/CoolingModels/.

  • 40.

    Holberg, J. B. & Bergeron, P. Calibration of synthetic photometry using DA white dwarfs. Astron. J. 132, 1221–1233 (2006).

  • 41.

    Kowalski, P. M. & Saumon, D. Found: the missing blue opacity in atmosphere models of cool hydrogen white dwarfs. Astrophys. J. Lett. 651, 137–140 (2006).

  • 42.

    Tremblay, P.-E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey Data Release 4. Astrophys. J. 730, 128 (2011).

  • 43.

    Tremblay, P.-E. et al. Core crystallization and pile-up in the cooling sequence of evolving white dwarfs. Nature 565, 202–205 (2019).

  • 44.

    Genest-Beaulieu, C. & Bergeron, P. A comprehensive spectroscopic and photometric analysis of DA and DB white dwarfs from SDSS and Gaia. Astrophys. J. 871, 169 (2019).

  • 45.

    Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).

  • 46.

    Bianchi, L. et al. Catalogues of hot white dwarfs in the Milky Way from GALEX’s ultraviolet sky surveys: constraining stellar evolution. Mon. Not. R. Astron. Soc. 411, 2770–2791 (2011).

  • 47.

    Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M. Astrophys. J. 866, 21 (2018).

  • 48.

    Kalirai, J. S. et al. The initial-final mass relation: direct constraints at the low-mass end. Astrophys. J. 676, 594–609 (2008).

  • 49.

    Weidemann, V. Revision of the initial-to-final mass relation. Astron. Astrophys. 363, 647–656 (2000).

  • 50.

    Catalán, S. et al. The initial-final mass relationship from white dwarfs in common proper motion pairs. Astron. Astrophys. 477, 213–221 (2008).

  • 51.

    Casewell, S. L. et al. High-resolution optical spectroscopy of Praesepe white dwarfs. Mon. Not. R. Astron. Soc. 395, 1795–1804 (2009).

  • 52.

    Williams, K. A., Bolte, M. & Koester, D. Probing the lower mass limit for supernova progenitors and the high-mass end of the initial-final mass relation from white dwarfs in the open cluster M35 (NGC 2168). Astrophys. J. 693, 355–369 (2009).

  • 53.

    Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D. & Turnbull, M. C. Stellar abundances in the solar neighborhood: the Hypatia Catalog. Astron. J. 148, 54 (2014).

  • 54.

    Chayer, P. et al. Improved calculations of the equilibrium abundances of heavy elements supported by radiative levitation in the atmospheres of hot DA white dwarfs. Astrophys. J. 454, 429–441 (1995).

  • 55.

    Deal, M., Deheuvels, S., Vauclair, G., Vauclair, S. & Wachlin, F. C. Accretion from debris disks onto white dwarfs. Fingering (thermohaline) instability and derived accretion rates. Astron. Astrophys. 557, L12 (2013).

  • 56.

    Bauer, E. B. & Bildsten, L. Increases to inferred rates of planetesimal accretion due to thermohaline mixing in metal-accreting white dwarfs. Astrophys. J. Lett. 859, 19 (2018).

  • 57.

    Hartmann, S., Nagel, T., Rauch, T. & Werner, K. Non-LTE models for the gaseous metal component of circumstellar discs around white dwarfs. Astron. Astrophys. 530, A7 (2011).

  • 58.

    Melis, C., Jura, M., Albert, L., Klein, B. & Zuckerman, B. Echoes of a decaying planetary system: the gaseous and dusty disks surrounding three white dwarfs. Astrophys. J. 722, 1078–1091 (2010).

  • 59.

    Kinnear, T. Irradiated Gaseous Discs Around White Dwarfs. Master’s thesis, Univ. of Warwick (2011).

  • 60.

    Grevesse, N., Asplund, M., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Astrophys. Space Sci. 328, 179–183 (2010).

  • 61.

    Frank, J., King, A. & Raine, D. J. Accretion Power in Astrophysics 3rd edn (Cambridge University Press, 2002).

  • 62.

    Marsh, T. R. LTE models of the emission lines of the dwarf nova Z Cha. Mon. Not. R. Astron. Soc. 228, 779–796 (1987).

  • 63.

    Szkody, P. et al. Cataclysmic variables from Sloan Digital Sky Survey. VI. The sixth year (2005). Astron. J. 134, 185–194 (2007).

  • 64.

    Szkody, P. et al. Finding the instability strip for accreting pulsating white dwarfs from Hubble Space Telescope and optical observations. Astrophys. J. 710, 64–77 (2010).

  • 65.

    Breedt, E. et al. 1000 cataclysmic variables from the Catalina Real-Time Transient Survey. Mon. Not. R. Astron. Soc. 443, 3174–3207 (2014).

  • 66.

    Thorstensen, J. R., Alper, E. H. & Weil, K. E. A trip to the cataclysmic binary zoo: detailed follow-up of 35 recently discovered systems. Astron. J. 152, 226 (2016).

  • 67.

    Gänsicke, B. T. et al. Sdss unveils a population of intrinsically faint cataclysmic variables at the minimum orbital period. Mon. Not. R. Astron. Soc. 397, 2170–2188 (2009).

  • 68.

    Pala, A. F. et al. Effective temperatures of cataclysmic-variable white dwarfs as a probe of their evolution. Mon. Not. R. Astron. Soc. 466, 2855–2878 (2017).

  • 69.

    Hillwig, T. C., Honeycutt, R. K. & Robertson, J. W. Post-common-envelope binary stars and the precataclysmic binary PG 1114+187. Astron. J. 120, 1113–1119 (2000).

  • 70.

    Kawka, A., Vennes, S., Dupuis, J. & Koch, R. The 0.33 day DA plus dME binary BPM 6502. Astron. J. 120, 3250–3254 (2000).

  • 71.

    O’Donoghue, D. et al. The DA+dMe eclipsing binary EC13471-1258: its cup runneth over… just. Mon. Not. R. Astron. Soc. 345, 506–528 (2003).

  • 72.

    Schmidt, G. D., Smith, P. S., Harvey, D. A. & Grauer, A. D. The precataclysmic variable GD 245. Astron. J. 110, 398–404 (1995).

  • 73.

    Aungwerojwit, A. et al. HS 1857+5144: a hot and young pre-cataclysmic variable. Astron. Astrophys. 469, 297–305 (2007).

  • 74.

    Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006).

  • 75.

    Parsons, S. G. et al. Testing the white dwarf mass-radius relationship with eclipsing binaries. Mon. Not. R. Astron. Soc. 470, 4473–4492 (2017).

  • 76.

    Nebot Gómez-Morán, A. et al. Post common envelope binaries from SDSS. XII. The orbital period distribution. Astron. Astrophys. 536, A43 (2011).

  • 77.

    Dye, S. et al. The UKIRT Hemisphere Survey: definition and J-band data release. Mon. Not. R. Astron. Soc. 473, 5113–5125 (2018).

  • 78.

    Hoard, D. W. et al. Cool companions to white dwarf stars from the Two Micron All Sky Survey All Sky Data Release. Astron. J. 134, 26–42 (2007).

  • 79.

    Debes, J. H. & Measuring, M. Dwarf winds with DAZ white dwarfs. Astrophys. J. 652, 636–642 (2006).

  • 80.

    Tappert, C., Gänsicke, B. T., Rebassa-Mansergas, A., Schmidtobreick, L. & Schreiber, M. R. Multiple emission line components in detached post-common-envelope binaries. Astron. Astrophys. 531, A113 (2011).

  • 81.

    Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

  • 82.

    Owen, J. E. Atmospheric escape and the evolution of close-in exoplanets. Annu. Rev. Earth Planet. Sci. 47, 67–90 (2019).

  • 83.

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

  • 84.

    Lecavelier des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514, A72 (2010).

  • 85.

    Kulow, J. R., France, K., Linsky, J. & Loyd, R. O. P. Lyα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).

  • 86.

    Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).

  • 87.

    Vidal-Madjar, A. et al. Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560, A54 (2013).

  • 88.

    Ben-Jaffel, L. & Ballester, G. E. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b. Astron. Astrophys. 553, A52 (2013).

  • 89.

    Poppenhaeger, K., Schmitt, J. H. M. M. & Wolk, S. J. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773, 62 (2013).

  • 90.

    Murray-Clay, R. A., Chiang, E. I. & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

  • 91.

    Chayer, P., Fontaine, G. & Wesemael, F. Radiative levitation in hot white dwarfs: equilibrium theory. Astrophys. J. Suppl. 99, 189–221 (1995).

  • 92.

    Owen, J. E. & Alvarez, M. A. UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photon-limited flows. Astrophys. J. 816, 34 (2015).

  • 93.

    Erkaev, N. V. et al. Roche lobe effects on the atmospheric loss from “hot Jupiters”. Astron. Astrophys. 472, 329–334 (2007).

  • 94.

    Schwadron, N. A. et al. Solar radiation pressure and local interstellar medium flow parameters from Interstellar Boundary Explorer low energy hydrogen measurements. Astrophys. J. 775, 86 (2013).

  • 95.

    Bzowski, M. et al. Solar parameters for modeling the interplanetary background. In Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere (eds Quémerais, E., et al.) 67 (ISSI Scientific Report Series 13, 2013).

  • 96.

    McClintock, W. E., Rottman, G. J. & Woods, T. N. Solar-Stellar Irradiance Comparison Experiment II (Solstice II): instrument concept and design. Sol. Phys. 230, 225–258 (2005).

  • 97.

    Valsecchi, F., Rappaport, S., Rasio, F. A., Marchant, P. & Rogers, L. A. Tidally-driven Roche-lobe overflow of hot Jupiters with MESA. Astrophys. J. 813, 101 (2015).

  • 98.

    Bashi, D., Helled, R., Zucker, S. & Mordasini, C. Two empirical regimes of the planetary mass-radius relation. Astron. Astrophys. 604, A83 (2017).

  • 99.

    Farihi, J., Parsons, S. G. & Gänsicke, B. T. A circumbinary debris disk in a polluted white dwarf system. Nat. Astron. 1, 0032 (2017).

  • 100.

    Soker, N. Can planets influence the horizontal branch morphology? Astron. J. 116, 1308–1313 (1998).

  • 101.

    Dewi, J. D. M. & Tauris, T. M. On the energy equation and efficiency parameter of the common envelope evolution. Astron. Astrophys. 360, 1043–1051 (2000).

  • 102.

    Zorotovic, M. et al. Post common envelope binaries from SDSS. XIII. Mass dependencies of the orbital period distribution. Astron. Astrophys. 536, L3 (2011).

  • 103.

    Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

  • 104.

    Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: constraining the common-envelope efficiency. Astron. Astrophys. 520, A86 (2010).

  • 105.

    Borgniet, S. et al. Extrasolar planets and brown dwarfs around AF-type stars. X. the SOPHIE sample: combining the SOPHIE and HARPS surveys to compute the close giant planet mass-period distribution around AF-type stars. Astron. Astrophys. 621, A87 (2019).

  • 106.

    Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfs through late unpacking. Mon. Not. R. Astron. Soc. 447, 1049–1058 (2015).

  • 107.

    Thorngren, D. & Fortney, J. J. Connecting giant planet atmosphere and interior modeling: constraints on atmospheric metal enrichment. Astrophys. J. Lett. 874, L31 (2019).

  • 108.

    Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Pacif. 113, 409–435 (2001).


  • Source : Link

    The prize-winning project reshaping the way we make plastic

    Business Planet looks at how one award-winning Dutch incubator is helping dozens of startups to produce the next generation of sustainable plastics. … READ MORE : https://www.euronews.com/2019/11/29/plastic-surgery-the-dutch-project-reshaping-polymers Subscribe to our channel: https://www.youtube.com/c/euronews?sub_confirmation=1 Watch our LIVE here: https://www.youtube.com/c/euronews/live read more

    Hatching startup success: incubators that grow your business

    Business Planet travels to Zwolle in the Netherlands to see how one award-winning business incubator has become a seedbed for startups. … READ MORE : https://www.euronews.com/2019/11/29/a-step-to-startup-success-the-hubs-encouraging-entrepreneurship Subscribe to our channel: https://www.youtube.com/c/euronews?sub_confirmation=1 Watch our LIVE here: https://www.youtube.com/c/euronews/live read more

    Writing a great business story: how smarter finance from Europe is boosting small firms

    Business Planet heads to Berlin to see how one innovative book publisher has accelerated its growth thanks to smarter finance backed by Europe.… READ MORE : https://www.euronews.com/2019/11/15/writing-a-great-business-story-how-smarter-finance-from-europe-is-boosting-small-firms Subscribe to our channel: https://www.youtube.com/c/euronews?sub_confirmation=1 Watch our LIVE here: https://www.youtube.com/c/euronews/live read more